
Autonomy and Software Technology on NASA’s Deep Space One

R. Doyle, D. Bernard, E. Riedel
. N. Rouquette, J. Wyatt
Jet Propulsion Laboratory

Pasadena, CA

M. Lowry
P. Nayak

NASA Arnes Research Center
Moffett Field, CA

(IEEE Intelligent Systems
May/June 1999)

NASA’s Deep Space One (DS1) mission is unprecedented. Normally justified by science
data return as the primary, if not the sole consideration, DSl is the first NASA mission
whose main purpose is to demonstrate the flight readiness of a set of technologies. DSl
is the vanguard of NASA’s New Millennium Program, which was conceived to directly
address the ongoing challenge of flight qualifying technologies for mission use, and to
short-circuit the Catch-22 situation where flight project managers naturally prefer to
utilize technologies only after they’ve been flown on another mission. Any of the DS1-
qualified technologies may hold the key towards enabling future NASA space
exploration missions. DS1 carries a dozen technology experiments, each demonstrating
new capabilities which cover the gamut of spacecraft functions from propulsion to
sensing to power to communications. Three of these technology experiments
demonstrate new capabilities in spacecraft autonomy and autonomous mission
operations.

The autonomy-related experiment on DS 1 with the largest scope is a joint NASA Ames
Research Center (ARC) / Jet Propulsion Laboratory (JPL) project known as the Remote
Agent (RA). RA is both an autonomy architecture and a set of component reasoning
engines for the functions of mission planning, execution and fault protection.

One of the fundamental space mission functions is navigation. DS1 is the first
interplanetary mission to be navigated by an Autonomous Navigation system of any
type. All previous missions have been navigated by ground operators. The DS1
navigation technology demonstration (AutoNav) breaks this ground-link, and enables a
spacecraft to navigate independently of ground teams and ground-links.

As spacecraft begin to become more autonomous, mission operations concepts must also
evolve. The Beacon Operations (BMOX) experiment on DS1 demonstrates a new end-
to-end concept for mission operations, where the spacecraft takes responsibility for
determining when ground support is needed.

One of the lessons learned by the NASA autonomy technologists is that software
engineering issues emerge as on the critical path towards realizing autonomy capabilities.
One of the most daunting autonomy software issues is that of testing. Encouragingly, a

technique based in formal methods yielded important results on DS 1 when an error was
detected early on in a component of the Remote Agent.

Another technique in software engineering yielded crucial results on DS 1 when
automatic code generation was successfully used to generate much of the core fault
protection flight code. Although not an official technology experiment, this success
nonetheless enabled DS1 to meet its intense development schedule and launch in October
1998.

The Remote Agent team is being led by Doug Bernard at JPL and by Pandu Nayak at
ARC. The Remote Agent Experiment (RAX) is a flight experiment that demonstrates a
new approach to spacecraft commanding and control. In the Remote Agent approach, the
operational rules and constraints are encoded in the flight software and the software may
be considered to be an autonomous "remote agent" of the spacecraft operators in the
sense that the operators rely on the agent to achieve particular goals. The operators do
not know the exact conditions on the spacecraft, so they do not tell the agent exactly what
to do at each instant of time. They do, however, tell the agent exactly which goals to
achieve in a period of time as well as how and when to report in. This Remote Agent
approach is being designed into the New Millennium Program's Deep Space One (DS 1)
mission as an experiment.

The DSl Remote Agent Experiment has multiple goals. A primary goal of the
experiment is to provide an on-board demonstration of spacecraft autonomy. This
includes goal-oriented commanding, time-driven and event-driven execution, and model-
based fault diagnosis and recovery. An equally important, and complementary, goal of
the experiment is to familiarize the spacecraft engineering community with the Remote
Agent approach and to decrease the risk (both real and perceived) in deploying Remote
Agents on future missions.

The Remote Agent is formed by the integration of three separate Artificial Intelligence
technologies: an on-board planner-scheduler, a robust multi-threaded executive, and a
model-based fault diagnosis and recovery system. All three are written in Harlequin Lisp
specifically ported to run under VxWorks on a RAD6000 processor. Fundamentally, each
of the three technologies can be thought of as using two distinct components: a general
purpose reasoning engine and application-specific models. The Remote Agent has been
designed to operate at several different levels of autonomy ranging from traditional
spacecraft commanding through on-board planning and execution. The Remote Agent
flight validation proceeded as follows: first the RA was used to handle low-level
commands as instructed by the ground. Next, the ability of the RA to execute a flexible
plan generated on the ground was demonstrated. Finally, the RA was given approval to
generate plans on-board and execute them without prior inspection of those plans by
humans. In the course of the experiment, several fictitious failures were injected, giving
the RA an opportunity to demonstrate its model-based fault protection approach. With
ground and flight testing now complete, all Remote Agent validation objectives have

been met and the team is turning its attention to how to apply the lessons learned during
the experiment to future technology upgrades.

Figure 1. Remote Agent Architecture.

The Autonomous Navigation team is being led by Ed Reidel at JPL. The Autonomous
Optical Navigation (AutoNav) system, by using images from an onboard camera of
sufficient quality AutoNav can control the flight path of a spacecraft, including use of
Solar Electric Propulsion (SEP), and target one or more flyby encounters, or rendezvous.
The system was designed to be largely self contained, meaning it can be inserted into a
fairly simple software architecture, without other autonomous systems required, except
for Attitude Control (ACS). This is the situation for DSl. Even in the simple
"traditional" environment of the borrowed Mars Pathfinder software set, highly
autonomous behavior has been achieved. The advantages of this system, and the success
in its utilization so far, have encouraged several missions to baseline its use in whole or
part, these include the Space Technology-4 mission to rendezvous and land with a comet,
Stardust, which will use the close approach system, and Deep-Impact, a Comet
"penetrator" mission, which will use encounter and targeting components of AutoNav.

AutoNav consists of several subsystems and functions:
Navigation Executive Function - The "NavExec" controls all AutoNav operations that
cause physical action by the spacecraft. By Communicating with ACS, NavExec
accomplishes the complex of activities necessary to turn the spacecraft and image a
series of target navigational "beacons," which in the case of DS1 are usually "nearby"
asteroids. These activities include planning the sequence of turns to optimize time
utilization and insure completion of the photo-taking sequence on schedule. NavExec
also performs similar duties during the long segments of SEP activity, wherein the
spacecraft is commanded by NavExec to go to the required attitude, light the engine,
and maintain thrust at periodically updated attitudes and magnitudes. Similarly,
NavExec commands the execution of Trajectory Correction Maneuvers.

Image Processing - The Image Processing function, as its name implies, is responsible
for identifying the objects and stars in images relayed to AutoNav, and doing highly
precise data reductions. Ultimately 0.1 pixel (picture element) accuracy is anticipated
from the algorithms (although current scattered-light and other problems with MICAS
prevent this from being achieved). Special encounter image processing is included to
amplify the dim signal of the target as seen from many hours before closest approach.
Orbit Determination (OD) - Using data from the Image Processor, AutoNav computes
the position of the spacecraft through the use of a batch-sequential modified Kalman
filter. Parameters modeling SEP thrust, and random accelerations (e.g. errors in solar
pressure modeling, or spacecraft out gassing) are also estimated.
Maneuver Planning - With the results of the OD in hand, AutoNav will compute
updates to the upcoming SEP thrust plan, or the components of a "statistical"
trajectory correction maneuver (i.e. one based on statistical variations in the OD).
These TCM's can use either SEP or the hydrazine propulsion system.
Encounter Knowledge Updates: After the final TCM is performed, AutoNav
switches to a special mode of activity, which specifically updates onboard knowledge
of the target position, and relays this information to ACS for spacecraft pointing
changes.

AutoNav began operations as soon as the spacecraft came to life after launch on October
24, 1998, providing critical ephemeris information to ACS. Over the following four
months, progressively more components of AutoNav were checked out, and invoked,
until April 20, 1999 the spacecraft came completely under the control of the AutoNav
system, flying a SEP powered flight path computed onboard. It is anticipated that this
autonomous control will continue with periodic necessary suspensions or updates in
AutoNav control for onboard tests and validations, leading to a fully autonomously
controlled flyby of asteroid 1992KD on July 29, 1999.

CONVENTIONAL AUTONOMOUS
NAVTGATTON NAVTGATTON

Optimum return of science with
d-loop target tracking.

Maneuvm

Computation onboa
ires costly tracking Autonomous Mane

Images downlinked,
Nav Commands developed
sequenced and uplinked Spacecraft Position,

Velocity and Forces
Estimated Onboard
from Optical Data
triangulation.

Earth-Based radio
and optical data
Processing

Figure 2. Comparison of Conventional and Autonomous Spacecraft Navigation.

The Beacon Operations team is being led by Jay Wyatt at JPL. The purpose of this
experiment is to flight validate an operations concept and the associated technology
components necessary to enable more adaptive operations on future space missions. The
value of this approach is tri-fold. First, it enables the spacecraft to ground link to be
achieved more cheaply from both a spacecraft resources standpoint as well as a mission
operations cost perspective. Second, it reduces the routine traclung burden of large
aperture antennas, which can help NASA’s Deep Space Network reduce the loading on
its overconstrained antenna network. Third, it can reduce mission risk since the low-cost
link can be maintained more frequently and/or during times in a mission when the
telemetry link cannot be achieved due to spacecraft or mission design constraints.

Two subsystems implement the beacon operations functionality on DS 1. The first is an
end-to-end tone system that enables the spacecraft to inform the ground whether or not
data needs to be sent. This tone does not contain any telemetry but rather represents one
of four possible requests for ground action (no action required, contact when convenient,
contact within a certain time, or contact immediately). The second subsystem produces
intelligent data summaries that are downlinked as telemetry after ground personnel
respond to the tone request. Onboard summarization produces four types of engineering
telemetry. High-level spacecraft information, such as the number of alarm crossings,
spacecraft mode and state histories, and other pertinent statistics are gathered since the
last ground contact. Episode data is gathered for the culprit and causally related sensor
channels whenever a sensor violates an alarm threshold and is stored at a high sample
rate. Snapshot telemetry is collected at a much lower sample rate for all sensor and
transform channels. Snapshot data is used only for rough correlation and to fill in the
gaps between episodes. The last component of the downlinked summary, Performance
Data, is similar to episode data but captures maneuvers or other events that are known in
advance to be of interest to people on the ground. All of the summary algorithms are
implemented in C for the VxWorks operating system.

The summary algorithms incorporate AI-based methods to enhance anomaly detection
and episode identification capability. The ELMER (Envelope Learning and Monitoring
using Error Relaxation), technology replaces traditional red-lines with time-varying alarm
thresholds to provide faster detection with fewer false alarms. These functions are
learned using a neural network and training can be performed onboard or on the ground
(ground-based for DS 1). ELMER is particularly powerful because very little knowledge
engineering is required and training of the neural net is accomplished with nominal
sensor data. Another AI-based method produces empirical transforms that derive their
heritage from previous AI research work at JPL in the area of selective monitoring. Once
computed onboard, these act as pseudo sensors. The current transforms for DS1 compute
high, low, and average values, first derivative, and second derivative. Alarm limits can
be placed on these transforms and they can also serve as an input to the ELMER neural
network. Additional transforms, if desired, can easily be defined and uplinked to the
spacecraft as the mission progresses.

Summarization

Urgent request for ground action
Track within certain window

\ Track when convenient
\
\ All ok

\
\

Beacon Tone %,
\
\

Figure 3. Beacon Operations System

The DS1 autonomy software testing work was led Mike Lowry at ARC. Within the
realm of space exploration a major obstacle to widespread application of autonomy
capabilities in flight software is not just technical feasibility; it is doubt about its
trustworthiness as a replacement for human-in-the-loop decision-making. Autonomous
control systems raise difficult verification & validation issues because, unlike
conventional sequencer-based open-loop systems that perform transactions visible
through uplinWdownlink communications, they close many control loops and arbitrate
many resources onboard with specialized reasoning in multiple concurrent threads. The
number of possible execution paths for autonomous control systems is many orders of
magnitude greater than traditional flight control software. What is needed are V&V
techniques that significantly increase confidence in these decision-making control
systems. Towards this end, researchers at NASA Ames, JPL, and Carnegie Mellon
University demonstrated techniques for verifying the greatly expanded number of
possible execution paths inherent in autonomy software. Techniques were demonstrated
for all parts of the remote agent - planner, executive, and MIR- with the most extensive
demonstration focusing on the resource manager of the goal-oriented executive.

Autonomy software is inherently concurrent - that is, multiple processes achieving
different goals or sub-goals are executed in parallel. Concurrent task software is easier to
program than traditional sequences because the means of achieving each goal can be

designed separately. Because of the closed-loop nature of autonomy, each goal being
achieved represents a separate process. However, the extra degrees of freedom in
achieving goals through separate processes can lead to unintended interactions between
processes and lead to failures. It is these extra degrees of freedom that make autonomy
software verification difficult through testing alone.

The technology of model-checking has been previously used to debug and verify
concurrent digital hardware designs and communication protocols. Most of the
demonstrations focused on using model-checlung to debug and verify portions of the
remote agent. Model-checlung is a set of mathematical algorithms based on automata
theory for verifying and debugging concurrent or real-time systems modeled as
interacting finite state machines. Given a model and a property, a model-checker searches
for traces of the model that violate the property -a trace is an interleaved sequence of
states of the finite state machines. Model checkers differ from simulators in that they
explore all relevant traces. In other words, they explore all realizable paths through the
graph of states that can be reached from the initial state and that match the property being
checked. Model checkers are particularly well suited to exploring the relevant execution
paths of non-deterministic systems with multiple processes running in parallel. This
makes them well adapted to verification and debugging of autonomy software.

For the procedural executive, model-checking was applied directly to the core software.
Fivc concurrency bugs were found by using model-checlung to explore all possible
execution traces. The errors found were for unusual situations that were not fully
considered by the designers. For example, a race condition was found for the situation
where a task program was aborted and the locks it had on resources were not released
correctly if the demon monitoring the locks woke up at a particular point. For the planner
and MIR, both of which are based on deductive methods as opposed to procedural
methods, model-checking was applied to validate the models. Specifically, it was
demonstrated how model-checking could be used to find possibly unintended
consequences of a model, and thus help the model developer revise the model. Finally, it
was shown how run-time verification could be tied into the same framework as model-
checking through behavior auditors that monitor the run-time execution of autonomy
software. Behavior auditors are specified in a language similar to the property
descriptions used by model-checkers.

The before and after graphic in Figure 4 illustrates a critical step in current approaches to
analytic verification - namely, manually abstracting a software system so that current
verification algorithms can detect bugs. This particular graphic illustrates the abstraction
of the remote agent resource manager, in which five anomalies were detected through
analytic verification algorithms.

Spacecraft

Achieve Monitor&

Tank

c{O,l},Subs,Ach?

Figure 4. Software Abstraction of Remote Agent Resource Manager

The auto-coding work on DS1 was led by Nicolas Rouquette at JPL. Until DS1, the JPL
had not used code-generation techniques on large scale for avionics software. However,
the constraints of the mission design and development cycle, limited budget and
resources dictated a departure from past practices. The demands of concurrent design and
development as well as overlapping design and integration schedules would have drained
all available resources allocated for system-level fault-protection. The requirement that
post-launch activities be directed by fault protection further increased the difficulty of the
task; on other spacecraft, such activities are typically handled with sequences.

First, the DS1 project decided to reuse the successful Mars Pathfinder (MPF) fault-
protection engine as it achieves a good separation of architecture and domain concerns.
However, MPF relied heavily on software engineers to encode the domain-specific fault-
protection design into the target C language. Despite fewer software-engineering
resources, DSl faced a nonetheless larger design scope (spinner vs. 3-axis spacecraft)
that also included post-launch activities that, on other spacecraft, are typically handled
with sequences. To step up to this challenge, the fault-protection strategy was

reorganized to capture all designs in terms of high-level behavioral and structural
specifications instead of low-level C code. The Hare1 statechart notation became the
standard means of describing the design of every fault protection monitor and response.
Such monitors are responsible for extracting features from raw data to reliably detect the
occurrence of a known fault while fault responses define the logic that controls the
spacecraft to mitigate the effects of a fault.

DS1 represents the first spacecraft at JPL where code generation from statecharts has
been systematically applied to achieve rigorous and consistent software implementations
in the target language directly from the statechart diagrams. This process was supported,
in part, with the Mathwork's Matlab Stateflow' toolbox. This toolbox provides a
customizable translative code generator for statecharts. Extensive customizations of that
toolbox were necessary, first to address the needs of the DS 1 fault-protection runtime
architecture and second, to fulfill the end-to-end needs of the mission from design, to
software, integration and test and to operations,

To support the systematic comparison of test results obtained from any pair of platforms
(unit test, testbeds, and spacecraft), the execution of fault responses had to be adequately
instrumented. Knowledge of the set of all fault and responses was leveraged to derive a.
minimal-length encoding/decoding algorithm for on-board compression (encoding) and
ground decompression (decoding) of state transition events. Instead of instrumenting the
state transition code of each fault response, the statechart execution architecture is instead
instrumented to signal state-transition events to the compression algorithm. From a
sequence of such events, this algorithm computes an encoded value representing the path
to the current state from the top-level statechart (Le., the fault response handling the
occurrence of a fault) through all intermediate statecharts invoked (i.e., the hierarchy of
helper sub-responses invoked). The encoded path and ancillary sampled variables
constitutes an event record. These algorithms produce the necessary and sufficient set of
event records to provide full accountability of the rationale behind every state transition
for every fault response execution within memory limitations. This technique enables a
behavior reconstruction approach to testing, the process of producing a parsimonious
explanation of a fault-response execution by determining the sequence of external events
that recreates the same event record history as that obtained from the spacecraft.

Other
Avionics
Modules

faults

-d
4 sampled

data
I

Y output
commands

events

3 Statechart
Execution

I
Fault Responses

1

- 1

1 decoder u
Downlink

"-
Audit
Trail

L v
Spacecraft Avionics

Fautl Response Behaviol
(bold edges)

1 1-
Occurence

c

Figure 5. Behavior Reconstruction in Auto-coding.

These five autonomy technology experiments and related software engineering activities
on DS1 are paving the way for the use of autonomy capabilities in future NASA
missions: proving technologies, reducing perceived risk, and ameliorating first user
costs. NASA is entering the era of autonomous space systems, and the results achieved
on DS1 are already leading to applications of the autonomy technologies described here
as well as inspiring additional autonomy technology development work.

Portions of the research described in this article were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Dr. Douglas Bernard is the Technical Group Supervisor for the Avionics Flight System
Engineering group at JPL and team lead for Remote Agent autonomy technology
development for the New Millennium Program. He received a B.S. in Mechanical
Engineering and Mathematics from the University of Vermont, a M.S. in Mechanical
Engineering from MIT and a Ph.D. in Aeronautics and Astronautics from Stanford
University. He has participated in dynamics analysis and attitude control system design
for JPL spacecraft including the Galileo mission to Jupiter and the Cassini mission to
Saturn.

Dr. Richard Doyle is Technical Division Manager of the Information Technologies and
Software Systems Division and Leader of the Center for Space Mission Information and
Software Systems at JPL. He formerly held the roles of Technical Section Manager of
the Information and Computing Technologies Research Section and Program Manager
for Autonomy Technology at JPL. He received his Ph.D. in Computer Science at the
MIT Artificial Intelligence Laboratory in 1988. He is a Technical Program Chair for the
5* International Symposium on Artificial Intelligence, Robotics and Automation for
Space, at Noordvijk, The Netherlands in June 1999. He gave the Invited Talk entitled
“The Emergence of Spacecraft Autonomy” at the National Conference on Artificial
Intelligence in Providence, RI in July 1997.

Dr. Michael Lowry's research interests are in automated high-assurance methods for
software generation and software verification. After receiving his PhD from
Stanford University, he edited the MIT press book "Automating Software Design"
(1991) and has served on the editorial board of the Kluwer journal 'Automated Software
Engineering' since its beginning. After joining NASA Ames research center in 1992, he
started the Amphion project, which has developed technology that concurrently generates
software programs and proofs of correctness. The software programs are compositions
of software components, typically from NASA libraries. In 1996 he started research on
the verification of autonomous systems. Dr. Lowry currently leads the Automated
Software Engineering group at NASA Ames, which includes over a dozen PhD-level
researchers with a broad international background.

Dr. Pandurang Nayak is a research scientist with RIACS at the NASA Ames
Research Center, and a consulting faculty at Stanford University. He holds a Ph.D. in
computer science from Stanford University (1992), and his dissertation was an ACM
Distinguished Thesis. He is currently an associate editor of JAIR, and his research
interests include model-based autonomous systems, diagnosis and recovery, abstractions,
qualitative and causal reasoning. His work on incremental truth maintenance won a best
paper award at AAAI-97.

Ed Riedel joined the Voyager Mission Navigation team at JPL in 1978. He participated
in the six planetary encounters of both spacecraft, and was the lead optical navigation
engineer for the Voyager 2 Neptune flyby. After leading the optical navigation team for
the Galileo asteroid flybys and early Galilean tour, he became the New Millennium DS1
Navigation Team chief, directing the development of a completely autonomous optical
navigation system to guide the approach and flyby of DS1 past an asteroid and two
comets. He is an author of numerous papers on navigation, optical navigation and
navigation-related image processing technology.

Dr. Nicolas Rouquette is a Senior Computer Scientist at the Jet Propulsion
Laboratory. He holds an Electrical Engineering degree from ESIEE in France and a
Masters and Ph.D in Computer Science from the University of Southern California. He
was the software architect and engineer of the DS1 fault-protection software. H I S

research interests are in Artificial Intelligence, Model-Based Reasoning, Computational
Mathematics, and Software Engineering. His current work focuses on deploying
statechart technology in embedded systems.

Jay Wyatt is the principal investigator for the Beacon Monitor Operations Experiment
on DS 1. He also manages the Infrastructure and Automation work area at JPL, which
funds research and development in adaptive mission operations, advanced
telecommunications protocols, and automation of the Deep Space Network. Jay is also
the technical group supervisor for a mission autonomy and systems engineering group
within the JPL Information & Computing Technology Research Section. His current
research interests are in operations concepts for missions using autonomy, and more
generally, in monitoring and diagnosis of complex systems. Prior to Deep Space One,
Jay led software design & development activities for the Pluto and Europa missions. Jay
has approximately ten years of experience worlung within the NASA community, three
of which were spent developing space station life support systems at the Marshall Space
Flight Center.

